

2 FALL 2003 NAVO MSRC NAVIGATOR

The Director’s Corner
Steve Adamec, NAVO MSRC Director

NAVO MSRC Supports
Operation Iraqi Freedom

As one of four Major Shared Resource Centers
(MSRCs) within the Department of Defense
(DoD) High Performance Computing
Modernization Program (HPCMP), the NAVO
MSRC is a premiere provider of HPC services
and support to Research and Development
(R&D) communities throughout DoD. Here
at the NAVO MSRC, a unique and critical
portion of our mission is the provision of
these same cutting-edge HPC resources directly
to operational DoD users, i.e., warfighters.

One part of our technical mission is data
storage and management. While this may
seem to be a minor mission, the enormous
amounts of data we accumulate, store, and
disseminate to users can be essential in the
time-critical planning and execution of DoD
operations. For example, both computed and
collected data from a variety of sources were
stored and analyzed within the MSRC by
NAVOCEANO personnel to determine how
best to de-mine the Shatt al Arab straits and
to determine the most appropriate shipping
channels to allow supply ships to bring needed
military equipment and humanitarian materials
quickly into Iraq.

Using MSRC resources, NAVOCEANO
personnel also provided critical support to the
Navy, DoD Special Operations Forces, and to
Army and Marine Corps forces on the ground
in Iraq. Examples of the support provided to
the forces of Iraqi Freedom include:

? High-priority development and execution
of coastal ocean forecast models to
describe the tidal forces and currents that
might impact special operations activities.

? Identification, by NAVOCEANO Riverine
Analysis Team members, of potential
water hazards in the maze of Iraqi rivers
and canals that range from unidentified
rapids to soft riverbanks.

? Analysis by NAVOCEANO personnel of
potential flood impacts from threatened
Iraqi demolition of dams along the
approaches to Baghdad. Using the MSRC
HPC resources, they determined where
the water would go, how long it would be
present, and how coalition forces could
bypass it.

High priority use of the HPCMP assets at
NAVOCEANO for time-critical operational
support has proven to be hugely beneficial for
DoD operations and for the taxpayer. The
HPCMP R&D community also clearly benefits
from the enhanced resilience and availability of
the HPC environment that the MSRC
maintains to meet operational computing
requirements.
In the future, the mission of the NAVO MSRC
will undoubtedly continue to expand to meet
the unique requirements of the DoD operations
community. Here at the NAVO MSRC, we are
proud to enable HPC to play an important part
in maximizing America's Sea Power by
applying relevant oceanographic knowledge
across the full spectrum of warfare.

3FALL 2003NAVO MSRC NAVIGATOR

The Naval Oceanographic Office (NAVO)
Major Shared Resource Center (MSRC):
Delivering Science to the Warfighter

The NAVO MSRC provides Department of
Defense (DoD) scientists and engineers with high
performance computing (HPC) resources,
including leading edge computational systems,
large-scale data storage and archiving, scientific
visualization resources and training, and expertise
in specific computational technology areas (CTAs).
These CTAs include Computational Fluid
Dynamics (CFD), Climate/Weather/Ocean
Modeling and Simulation (CWO), Environmental
Quality Modeling and Simulation (EQM),
Computational Electromagnetics and Acoustics
(CEA), and Signal/Image Processing (SIP).

NAVO MSRC
Code N7
1002 Balch Boulevard
Stennis Space Center, MS 39522
1-800-993-7677 or
msrchelp@navo.hpc.mil

NAVO MSRC Navigator
www.navo.hpc.mil/Navigator

NAVO MSRC Navigator is a biannual technical
publication designed to inform users of the news,
events, people, accomplishments, and activities of
the Center. For a free subscription or to make
address changes, contact NAVO MSRC at the
above address.

EDITOR:
Gioia Furness Petro, petrogio@navo.hpc.mil

DESIGNERS:
Cynthia Millaudon, cynmill@navo.hpc.mil
Kerry Townson, ktownson@navo.hpc.mil
Lynn Yott, lynn@navo.hpc.mil

Any opinions, conclusions, or recommendations in
this publication are those of the author(s) and do
not necessarily reflect those of the Navy or NAVO
MSRC. All brand names and product names are
trademarks or registered trademarks of their
respective holders. These names are for
information purposes only and do not imply
endorsement by the Navy or NAVO MSRC.

Approved for Public Release
Distribution Unlimited

Contents

The Director’s Corner

2 NAVO MSRC Supports Operation Iraqi Freedom

Feature Articles

5 Multi-Level Parallel Paradigms for
Flow-Induced Vibrations

14 Density Functional Theory Studies of GaN
Surface Reactivity

High Performance Computing

11 Performance Analysis Tools Newly Deployed at
NAVO MSRC

23 Site-Independent Commands at NAVO MSRC: A
UCIL How-To

Programming Environment and Training

20 NAVO MSRC PET Update
21 PET Summer Interns Focus on MPI and OpenMP

Super Computing Environments

Scientific Visualization

9 SALMON Virtual Environment: A Collaboration
Between the NAVO MSRC and ARSC

The Porthole

18 Visitors to the Naval Oceanographic Office
Major Shared Resource Center

Navigator Tools and Tips

25 NAVO MSRC Help Desk FAQs

Upcoming Events

27 Conference Listings

5FALL 2003NAVO MSRC NAVIGATOR

Flow past a flexible cylinder subject to
Vortex-Induced Vibrations (VIV) arises
in numerous industrial and marine
applications, for example, the flexible
risers and tendons in petroleum
production and marine tow cables
(see Figure 1). Direct Numerical
Simulations (DNS) have proven to be
an effective tool to model such flows
in both laminar and turbulent
regimes. 1, 2 Realistic VIV simulations
of cylinder flows require a large
number of Fourier modes along the
cylinder span and high resolutions in
the streamwise and cross-flow
directions. Parallel computations
employing a single-level parallelism
for this type of problems have clear
performance limitations that preclude
effective scaling to the larger
processor count on modern
supercomputers.
Careful analysis indicates that VIV
computations demonstrate inherent
hierarchical structures when the
problem is discretized with spectral
element methods. Consider an
incompressible flow past a flexible
cylinder subject to VIV. It is assumed
the flow and cylinder variables are
periodic in the homogeneous
direction. A combined spectral
element—Fourier discretization—can
be employed to accommodate the
requirements of high-order as well as
efficient handling of multiply
connected computational domain in
the non-homogeneous planes.
Spectral expansions in the
homogeneous direction employ
Fourier modes that are decoupled
except in the nonlinear terms. Each
Fourier mode is in a Two-Dimensional
(2D) field and can be solved with the
spectral element approach.

Computations on the
Fourier modes, spectral
element plane, spectral
elements within the plane,
and at the sub-element level
form the hierarchy of
operations in the solution
process of the VIV problem.
Multilevel parallelism
naturally suits such VIV
computations with inherent
hierarchical structures.

MULTI-LEVEL PARALLEL

PARADIGMS FOR VIV
This article presents two
multilevel parallel
paradigms for VIV based on
Message Passing
Interface/MPI/MPI and
MPI/OpenMP, respectively.
Figure 2a illustrates the
MPI/MPI two-level parallel
paradigm. The flow domain
is first decomposed along the cylinder.
Each sub-domain consists of one or
more Fourier modes in the Fourier space.
At the first level are groups of MPI
processes, with each group computing
one sub-domain. The non-
homogeneous spectral element planes
are further decomposed at the second
level. Each of the sub-domains at the
second level comprises structured or
unstructured elements. Accordingly,
each MPI process within the group
computes one sub-domain at the
second level. Distinct communication
characteristics manifest at the two
levels and dominate different stages of
computation.
The dominant pattern at the first level
is the all-to-all communications for
transposing the distributed matrices
when the Fast Fourier Transformation

(FFT) is evaluated in the non-linear
terms and the velocity divergence. At
the second level, reduction operations
dominate the communications when
the inner products are evaluated in a
conjugate gradient iterative solver for
computing the pressure and velocity.
The communications on these two
levels take place at different stages of
the computation and alternate as the
simulation marches in time.
Figure 2b provides a schematic for the
MPI/OpenMP hybrid paradigm. The
flow domain is decomposed in the
homogeneous direction again. At the
first level multiple MPI processes are
employed, with each process
computing one sub-domain. At the

Multi-Level Parallel Paradigms for Flow-
Induced Vibrations
Suchuan Dong, Didier Lucor, and George Em Karniadakis, Division of Applied Mathematics, Brown University, RI

Figure 1. Flexible Risers.

Continued Next Page...

6 FALL 2003 NAVO MSRC NAVIGATOR

second level, multiple OpenMP
threads are employed to conduct the
computations within each sub-domain
in parallel.
Data exchange across sub-domains
is handled with MPI. Within the sub-
domain (or MPI process), accesses
to shared objects by multiple threads
are coordinated with OpenMP thread
synchronizations. A coarse grain
approach to OpenMP shared
memory parallelism is taken,
which reduces the OpenMP
synchronizations significantly.3,4

MPI calls are handled by only one
thread within each sub-domain. This
configuration assembles the nodal
messages into a single large message
and thus reduces the network latency
overhead. OpenMP barriers are the
main type of synchronizations
involved. The majority of barriers
occur at the switching points between
global and local operations. The
authors have developed a consistent
workload-splitting scheme for local
and global operations that completely
eliminates such barriers.3

RESULTS

In the research described
in this article, these
multilevel parallelization
models were applied to
VIV simulations of the
flow past a cylinder.
The first case is the
turbulent flow past a
stationary circular
cylinder at Reynolds
Number (Re) = 3900
based on the inflow
velocity and the
cylinder diameter. The
MPI/OpenMP hybrid
parallel paradigm
was employed for
this problem.
In the homogeneous direction there
are 32 Fourier modes, and 32 MPI
processes are employed in the
computations so that each process
computes one Fourier mode. P-type
refinement is performed systematically
in the x-y planes with the polynomial
order increasing from 8 to 16 in all the
elements. To demonstrate the effect of
multi-threading, the wall clock
time/step histories for all the

polynomial orders are
collected. The data with
a single thread per MPI
process are first
collected. Then, as the
polynomial order is
increased, the number
of OpenMP threads per
process is increased
approximately in
proportion to the cost

increase in the single-thread case.
Figure 3 shows the timing history as a
function of the time step for single-
and multiple thread cases. With a
single thread per process, the wall
clock time increases from about 4 to
about 30 seconds. As the number of
threads per process increases
approximately in proportion, the wall
clock time per step decreases
dramatically and essentially remains
constant for all the polynomial orders.
In the second case MPI/MPI two-level
parallel simulations were conducted of
the turbulent flow past a circular
cylinder at the Reynolds number
Re = 10,000. The number of Fourier
modes in the homogeneous direction
is varied between 2 and 64. At the
first level, MPI processes are divided
into groups (first level) based on the
number of Fourier modes such that each
group computes one Fourier mode.

M K P DOF
(million)

Processors Wall time/step (s)

2 6272 5 2.1 16 0.83

8 6272 5 8.5 64 1.04

16 6272 5 17 128 1.15

32 6272 5 33.9 256 1.21

64 6272 5 67.7 512 1.54

64 6272 6 97.5 512 1.62

64 6272 8 173.4 512 3.31

Table 1. Wall clock timing versus problem sizes for
cylinder flow at Re = 10,000. DOF: total degrees of
freedom of the system. M: number of Fourier
modes; K: number of spectral elements; P:
polynomial order of elements. Fourier de-aliasing is
employed in homogeneous z direction, and
polynomial de-aliasing is employed in x-y planes.

Figure 2. Schematics of multilevel parallelization
models: (a) MPI/MPI and (b) MPI/OpenMP. In
MPI/MPI, flow domain is first decomposed in the
homogeneous direction (first level)—each
non-homogeneous spectral element plane is
further decomposed subsequently (second level).
In MPI/OpenMP, flow domain is decomposed in the
homogeneous direction maps onto MPI processes
—multiple OpenMP threads within each MPI
process compute sections of data in parallel.

Flow Domain

Level 2
(MPI Process)

Level 1
(MPI Process Groups)

(a)

(b)

7FALL 2003NAVO MSRC NAVIGATOR

At the second level, eight processes
are deployed in each group for this
problem. Table 1 lists the wall clock
timings for various grid resolutions.
The capability of the multilevel parallel
paradigm is clearly demonstrated by the
large problem sizes (about 170 million
degrees of freedom) and the
performance (a few seconds per time
step). The data also demonstrate the
good scalability of this model. The
drag coefficient computed from
simulations is CD = 1.114, which is in
good agreement with experimental
value CD = 1.186.5

The third case simulates the turbulent
flow past a rigid cylinder subject to
vortex-induced vibrations at the
Reynolds number Re = 1000
employing 32 Fourier modes in the
homogeneous direction. The cylinder

is allowed to move freely only in the
transverse direction. Figure 4a shows
plots of isocontours of the instantaneous
pressure in the near-wake, which
demonstrates the three-dimensionality
of the flow structures. Figure 4b shows
spatial-temporal contours of the drag
(top plot) and lift (bottom plot) on the
cylinder. Significant variations of the
instantaneous lift and drag forces
along the cylinder are observed.

Analysis indicates that regions with
high lift amplitude correspond to
situations where the cylinder
displacement and the lift force are in
phase, while regions with low lift
amplitude correspond to situations
where cylinder displacement and the
lift force are out of phase. Indeed,
strong three-dimensionality in the
wake (See Figure 4a) influences the

topology of the vortices inducing forces
that are not in phase with each other.
In real-world flow situations, a variety
of uncertainties exist in the flow
problems regarding the inflow
conditions, boundary conditions, and
the structural parameters of the
cylinder.
Figure 5(top) illustrates some of the
uncertainties in the cylinder flow. This
study employs the generalized
polynomial chaos 6 to solve such
stochastic flow problems. Figure
5(bottom) shows the spatial-temporal
contours of the lift force for a
deterministic flow (top plot) and a
stochastic flow (bottom three plots)
past a cylinder at the Reynolds
number Re = 300. The stochastic
flow solution corresponds to an
uncertainty of 1% in the incoming

Figure 4.
Deterministic flow
past a rigid cylinder
oscillating freely in
cross-flow direction
at Re=1000. (a)
Spatial-temporal
distributions of the
drag (top) and lift
(bottom) forces on the
cylinder. (b) pressure
isocontour in cylinder
wake.

Continued Next Page...

Figure 3. MPI/OpenMP hybrid
simulations (Re = 3900): wall clock
time for P-refinement with one thread
per process (dashed line) and
multiple threads per process (solid
line). The labels indicate the number
of OpenMP threads per process, e.g.,
“2T” means two threads per process.

4a

4b

8 FALL 2003 NAVO MSRC NAVIGATOR

flow. The plots show the contributions
to the lift force from different random
modes. The contribution from the 0th
(mean) random mode decreases,
while the contributions from the higher
random modes grow over time.

SUMMARY

Parallel computations exploiting a
single-level parallelism for VIV
simulations have clear performance
limitations that preclude scaling to
the large number of processors on
modern supercomputers. To take
advantage of the hierarchical
structures inherent in VIV
computations, this article has
presented two multilevel parallel
paradigms based on MPI/MPI and
MPI/OpenMP in the context of
spectral element methods that
completely eliminate the
performance restrictions in single-
level parallel computations.
Because a greatly reduced number
of processes are involved in the
communications at each level, these
multilevel parallel paradigms reduce
the network latency overhead and
enable the applications to scale to a
large number of processors more
efficiently. The multilevel parallel
paradigms presented here are
suitable for VIV computations at
high Reynolds numbers.

Acknowledgements

This work was supported by the Office of Naval Research (ONR) and a High Performance Computing Modernization Program (HPCMP)
challenge project for computer time on the machines at the NAVO MSRC, U.S. Army Engineer Research and Development Center (ERDC), and
Arctic Region Supercomputing Center (ARSC).

References

1. Evangelinos, C. and G.E. Karniadakis, "Dynamics and Flow Structures in the Turbulent Wake of Rigid and Flexible Cylinders Subject to
Vortex-Induced Vibrations," Journal of Fluid Mechanics, 400, 91, 1999.

2. Newman, D. and G.E. Karniadakis, "A Direct Numerical Simulation Study of Flow Past a Freely Vibrating Cable," Journal of Fluid
Mechanics, 344, 95, 1997.

3. Dong, S. and G.E. Karniadakis. "Dual-level parallelism for deterministic and stochastic CFD problems," Proceedings of Supercomputing
2002, Baltimore, Nov. 2002.

4. Dong, S. and G.E. Karniadakis. "P-refinement and P-threads," Computer Methods in Applied Mechanical Engineering, 192, 2191-2201, 2003.

5. Gopalkrishnan, R., "Vortex-Induced Forces on Oscillating Bluff Cylinders," Ph.D. Dissertation, Department of Ocean Engineering,
Massachusetts Institute of Technology, 1993.

6. Xiu, D., D. Lucor, C.H. Su, and G.E. Karniadakis, "Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos,"
Journal of Fluid Mechanics, 124, 51-59, 2002.

Figure 5. Stochastic flow past a cylinder. Top: schematic of a random
inflow process past a cylinder with random boundary conditions and
random structural parameters; Bottom: Spatial-temporal contours of the
lift force for a deterministic flow (a) and a stochastic flow (b-d) past a
cylinder at Re=300; the bottom three figures show the lift force
contributions by the 0th random mode (b), 1st random mode (c), and 2nd
random mode (d).

(a)

(b)

(c)

(d)

9FALL 2003NAVO MSRC NAVIGATOR

SALMON Virtual Environment: A Collaboration
Between the NAVO MSRC and ARSC
Pete Gruzinskas and John Van der Zwaag, NAVO MSRC Visualization Center

The NAVO MSRC provides tailored
support to the Climate, Weather, and
Ocean (CWO) modeling community.
This includes support in the realm of
High Performance Computing (HPC),
storage, and visual analysis. In the
area of visual analysis, the NAVO
MSRC Visualization Center has
become proficient in developing
interactive analysis applications,
which allow users to interactively
analyze and interrogate their full-
resolution model output. These
custom applications are efficient and
portable and can usually be run on
the users’ desktops.
In recent history, the NAVO MSRC
Visualization Center has collaborated
with users, other Shared Resource
Centers (SRCs), and other
Government agencies to provide no-
cost, custom, portable analysis
routines.
In a continuing effort to provide users
(in this case Dr. Kate Hedstrom and
the Sea-Air-Land Modeling and
Observing Network (SALMON)) with
visual analysis solutions, a
collaboration with the Arctic Region
Supercomputing Center (ARSC) was
initiated to exploit the ARSC’s new
state-of-the-art immersive display
system (CAVE). Testing at the
Mississippi State University (MSU)
CAVE concluded this software
application project, which should be
delivered by November 2003.

DESCRIPTION

The Cave Automatic Virtual
Environment (CAVE), originally
developed at the University of Illinois,
is a room-sized, multi-user virtual
reality device. A CAVE consists of one

to six walls on which Three-
Dimensional (3D) stereo graphics are
projected and usually includes some
type of spatially tracked input device
such as a wand or pinch glove. By
tracking the position and orientation
of the user's head, the graphics can be
generated in such a way to give the
user a very immersive experience.
The CAVE has been useful in a
variety of scientific visualization
applications such as vehicle design
and ocean simulation.
While 3D immersion, as provided by
CAVE, is not necessarily the panacea
of analysis, in the case of CWO it
allows analysts to literally enter the

Continued Next Page...

Right: User in CAVE
environment.

Below: CAVE GUI
interface with
particle trace.

10 FALL 2003 NAVO MSRC NAVIGATOR

environment and view 3D ocean
features from the inside out, unlike
any other display device.

HARDWARE ISSUES

One of the biggest challenges was the
significant geographic separation
between the development site and the
target hardware environment.
Consequently, CAVE was developed
and tested without the benefit of using
the actual production hardware. This
challenge was overcome through the
use of VRJuggler and collaboration
with MSU.
A key decision was to use the
VRJuggler libraries. VRJuggler,
developed at the Iowa State
University Virtual Reality Center, is a
suite of tools used for developing
virtual environments without needing
to understand the underlying
hardware. Applications developed in
VRJuggler can easily be reconfigured
to run on anything from a CAVE
system to an Immersadesk. VRJuggler
is also cross-platform and can be
run using a simulator mode so
development can be accomplished
locally on a Linux workstation.
Another benefit of VRJuggler is that it
is an open source project and does
not require licensing fees to use.
While initial testing could have been
performed locally on a desktop
workstation, issues such as multi-

threading, multiple displays, and input
devices required that final testing be
performed on an actual CAVE system.
Even though travel to ARSC was
certainly a possibility, it was more
beneficial, both in regards to cost
and time, to use a similar system at
a closer location. This provided the
perfect opportunity to collaborate
with MSU, whose recently upgraded
computerized virtual environment
(COVE) system closely matches the
CAVE system and is conveniently
located within driving distance of the
NAVO MSRC.

DESIGN ISSUES

One of the most important issues in
designing a virtual environment in a

system like a CAVE is interactivity. In
a CAVE system, the user's head is
tracked so the correct projection can
be displayed on the walls according to
the user’s position in the physical
environment. If the frame rate is not
sufficiently high, it can destroy the
immersive feeling and even cause
disorientation or nausea.
One of the easiest ways to ensure
interactive frame rates is to take
advantage of the multiple
processors available on SGI
Onyx systems. A VRJuggler
application is designed to be
separated across multiple threads
by dedicating a separate thread for

Flattened 3D CAVE environment which simulates what would be rendered on the individual walls.

CAVE GUI
interface with
a horizontal
slice view.

Side Wall Side WallFloor

Continued Page 26

11FALL 2003NAVO MSRC NAVIGATOR

If you are involved in developing
and/or maintaining parallel
application code, you are no doubt
concerned about understanding and
improving the code's performance.
Two technologies that can help with
these tasks are the Performance
Application Programming Interface
(PAPI) cross-platform interface to
hardware performance counters and
the Tuning and Analysis Utilities
(TAU) suite of performance analysis
tools. Together, these technologies
allow the user to easily collect
accurate and relevant performance
data and analyze the data in terms of
application source code constructs.

PAPI
PAPI provides a portable interface to
the hardware performance counters
available on most modern

microprocessors. These counters exist
as a small set of registers that count
events, which are occurrences of
specific signals related to the
processor's functions. Monitoring
these events helps in understanding
the correlation between the structure
of source/object code and the efficiency
of the mapping of that code onto the
underlying architecture. This
correlation has a number of uses in
performance analysis, including
performance modeling, benchmarking,
hand tuning, and effective use of
compiler optimizations.
PAPI provides two interfaces to the
underlying counter hardware; a
simple, high-level interface for the
acquisition of simple measurements
and a fully programmable, low-level
interface directed toward tool
developers and users with more

sophisticated needs. The low-level
interface is fully programmable and
has features such as guaranteed
thread safety and writing of counter
values, multiplexing, and notification
on threshold crossing as well as
processor-specific features. The high-
level interface simply provides the
ability to start, stop, and read specific
events one at a time. PAPI provides
portability across different platforms
by using the same routines with
similar argument lists to control and
access the counters for every
architecture.
As part of PAPI, a predefined set of
events has been established to
represent the lowest common
denominator of every good counter
implementation. The intent is that the
same source code will count similar

Performance Analysis Tools Newly Deployed
at NAVO MSRC
Shirley Moore, Innovative Computing Laboratory/University of Tennessee - Knoxville
PET Computational Environments Functional Area Point of Contact

Figure 1. Four variants of the matrix multiply algorithm.

Continued Next Page...

12 FALL 2003 NAVO MSRC NAVIGATOR

and possibly comparable events when
run on different platforms. If the
programmer chooses to use this set of
standardized events, then the source
code need not be changed, and only
a fresh compilation and link is
necessary. However, should the
developer wish to access machine
specific events, the low-level
Application Programming Interface
(API) provides access to all available
events and counting modes.

TAU
TAU is an integrated toolkit for
performance instrumentation,
measurement, and analysis of parallel
message passing and/or multi-
threaded programs. TAU provides a
portable profiling and tracing toolkit
for the performance analysis of
applications written in C++, C,
Fortran 90, Java, and Python.
While profiling computes summary
statistics of performance metrics (such
as the total exclusive and inclusive
time/counts spent in a routine), tracing
captures detailed time-stamped event
logs that highlight the time-varying
aspect of performance events. TAU
uses PAPI to access low-overhead
wallclock time and hardware
performance counters and to process
virtual time. TAU supports different
modes of instrumentation: source code,
pre-processor-based rewriting of source

code, Message Passing Interface (MPI)
library level, and runtime instrumentation.
The instrumentation captures data for
functions, methods, basic blocks, and
statement execution at all execution
levels. An API provides selection of
measurement groups for organizing
and controlling instrumentation.
A pre-processor-based instrumentor
(tau_instrumentor) rewrites the original
code with TAU instrumentation calls. It
uses Program Database Toolkit (PDT)
to parse the application (written in
F90, C/C++) and subsequently
traverse the abstract syntax tree to
insert calls to start and stop TAU
timers at routine transitions. TAU
provides both command-line and

graphical tools for analyzing profile
data. Trace files produced by TAU
instrumentation can be converted into
a number of different formats for
viewing by third-party trace analysis
tools, such as VAMPIR.

EXAMPLE

To illustrate the use of TAU and PAPI,
consider four variants of the well-
known matrix multiply algorithm as
shown in Figure 1. In this example, a
timer with a name, signature, and
group parameters is declared. The
timer start and stop calls around the
main loop are used to measure a
variety of performance metrics. The
TAU has been configured using:

% conf igure -papi=<dir> \
MULTIPLECOUNTERS \
PAPIWALLCLOCK

This creates a TAU stub makefile that
is included in the application makefile
for compiling and linking the TAU
and PAPI libraries. (Note that on
NAVO MSRC machines, applying
configuration is unnecessary, since
TAU has already been installed as
part of the computational
environment—see the note at the end
of this article.)
The following environment variables
were set before executing the program:

Figure 3. Loop interchange
optimization employed
where the ijk loop is
transformed to the ikj loop.

Figure 2. TAU report
of program executed
on a Pentium III/500
MHz Xeon processor
with PAPI.

13FALL 2003NAVO MSRC NAVIGATOR

% setenv COUNTER1 \
PAPI_FP_INS

% setenv COUNTER2 \
PAPI_L1_DCM

% setenv COUNTER3 \
P_WALL_CLOCK_TIME

This allows measurement of the
number of floating point instructions
executed, level 1 data cache misses,
and the wallclock time, respectively.
When the program is executed on a
Pentium III/500 MHz Xeon processor,
it takes 152.85 seconds of wallclock
time, executes 2.14E9 floating point
operations, and incurs 1.11E9 data
cache misses in the main instrumented
loop as reported by TAU using PAPI
(see Figure 2). This verifies that the
number of floating point instructions
executed matches the expected matrix
multiply loop execution (for problem
size n=1024, 2*n^3 = 2.14E9).
Figures 3, 4, and 5 show how the
loop that computes the product of
the two matrices can be rewritten.
In Figure 3, the loop interchange
optimization is employed where
the ijk loop is transformed to
the ikj loop. This reduces the
number of data cache misses and
consequently the time to execute the
loop (to 73 seconds).

In Figure 4, to further reduce the data
cache misses, the strip mining
optimization is applied to the original
code by performing the computation
on strips of size 128 (CACHE in the
code). This reduces the execution
time to 14.9 seconds.
Finally, in Figure 5, the strip-mining
and loop-interchange optimizations
are combined. This reduces the
number of data-cache misses from
1E9 to 7.1E5 and the wallclock time
from 152 seconds to 11.2 seconds.

CONCLUSIONS

Parallel performance problem solving
depends on robust systems for

empirical performance evaluation.
Flexibility and portability in empirical
methods and processes are influenced
primarily by the strategies available
for instrumentation and
measurement and how effectively
they are integrated and composed.
The matrix multiply example
demonstrates how performance data
from hardware performance
counters is critical in identifying
causes for poor performance.
PAPI and TAU have been installed
and are ready for use on the NAVO
IBM POWER3 (HABU) and
POWER4 (MARCELLUS) platforms.
For more information, see the PAPI
and TAU documentation in the
Computational Environments (CE)
section of the Online Knowledge
Center (OKC) (from the top level
OKC page, scroll down on the left
and click on CE, then scroll down
on the CE main page to FY03
Projects and click on "Consistent
Well-documented Computational
Environment," where you will find
links for PAPI and TAU), or contact
CE at pet-ce@cs.utk.edu. For
information specifically about where
PAPI and TAU are installed on
NAVO MSRC machines, see the
PET Computational Environments
repository at http://rib.cs.utk.edu/
cgi-bin/catalog.pl?rh=355.

Figure 5. Combined
strip-mining and
loop-interchange
optimizations.

Figure 4. Strip mining
optimization applied
to the original code.

Continued Page 16

With the increasing application of direct
band gap materials like Gallium
Nitrogen (GaN) in short wavelength
optoelectronics and high temperature,
high power electronics, greater focus has
shifted to reducing the number of defects
in these materials, so that better control
can be achieved over the material
properties. By altering the surface
energetics, surfactants like Antimony (Sb)
influence a variety of processes such as
adsorption, desorption, nucleation, surface
diffusion, and step edge growth of GaN. As a
result, such surfactants are used during
semiconductor film growth to improve the control
over the processes that govern the growth of
semiconductor materials. Among other factors,
crystallographic orientation plays a significant role in the
growth process. More specifically, ab initio studies are
intended to improve our understanding of the surfactant
effects on different GaN facets resulting into Lateral Epitaxy
Overgrowth (LEO).

A planewave total energy calculation code, DACAPO, which
implements periodic boundary conditions, is used. The Kohn-Sham one-
electron valence states are expanded in a basis of plane-waves with
kinetic energies below 25Ry, and the Generalized Gradient
Approximation (GGA-PW91) is used to describe the exchange-correlation
energy. Ultrasoft pseudopotentials are employed to describe the ionic
cores. A slab consisting of eight layers of GaN(0001) or GaN(1120) and
accounting for the appropriate dipole correction is used to model these
surfaces. In all cases, the top four GaN layers are allowed to relax to their
equilibrium positions, while the bottom four layers are constrained to
their ideal bulk positions. The Brillouin zone is sampled with a 4x4x1
Monkhorst-Pack grid. The self-consistent PW91 density is determined by
iterative diagonalization of the Kohn-Sham states (kb=0.1eV) and Pulay

—

16 FALL 2003 NAVO MSRC NAVIGATOR

mixing of the resulting electronic
density. Convergence with respect to
slab thickness, k-point set, and cut-off
energy is always confirmed.
Our calculations show that bulk
incorporation of Sb in GaN is highly
unfavorable, suggesting that Sb tends
to segregate on the surface. On the
GaN(0001) surface, Sb can bind at
either the fcc or hcp sites with almost
equal strengths, as shown in Figure
1a and 1b, respectively. This is
demonstrated by the identical binding
characteristics of the Sb atom at both
the Face-Centered Cubic (fcc) and
Hexagonal Close Packing (hcp) sites,

as shown by the electron density plots
in Figure 2. For comparison, Ga
shows a clear preference for the fcc
site, whereas N shows a clear
preference for the hcp site on the
GaN(0001) surface, as shown in
Figure 1c and 1d, respectively.
Once the thermochemistry of atomic
and molecular adsorption has been
studied, the kinetics of the individual
elementary steps (e.g., diffusion of the
surface, bond-breaking/making
events, etc.) is investigated using the
Nudged Elastic Band (NEB) method.
The final goal of these costly iterative
calculations is to determine the

minimum energy path and the
corresponding activation energy
barrier. The stable endpoints of all
NEB calculations are allowed to fully
relax to their respective local minima.
These endpoints are connected
through a set of 7 to 10 intermediate
images on the elastic band. The
intermediate images are subsequently
allowed to relax in all degrees of
freedom except for the direction of
the band itself, until the energy
landscape converges to the minimum
energy path connecting the two
endpoints. A cubic spline energy
interpolation scheme between the

Figure 1. Schematic of adsorption on GaN(0001) of: (a) Sb at fcc site, (b) Sb at hcp site, (c) Ga at fcc site, (d) N
at hcp site.

Figure 2. Charge density
difference plot of Sb adsorbed
on the fcc and hcp sites of a
GaN(0001) surface. The plots
are obtained by subtracting slab
charge density plus gas phase
atomic charge density from the
composite system's charge
density. Contours are spaced 0.01
eV/Å3 apart, with the 0.0 eV/Å3
contour in black. Yellow and
red indicate electron density
decrease, while blue and
green indicate electron
density increase.

17FALL 2003NAVO MSRC NAVIGATOR

images is implemented, using the
calculated Hellman-Feynman
forces along the reaction path, in
order to obtain an accurate estimate
for the true transition state. Transition
states identified with the NEB
method are verified by vibrational
frequency analysis yielding a single
imaginary frequency.
The NEB calculations performed in
this study suggest that atomic nitrogen
(N) has a diffusion barrier of 1.0 eV
on GaN(0001) surface, whereas Sb
has a diffusion barrier of ca. 0.5 eV
on the same surface. The higher
mobility of Sb is commensurate with
its surfactant action.
Furthermore, the recombination
reaction N(a) + N(a) à N2 (g) on the
GaN(0001) surface, is rather difficult
with an activation barrier of 1.9 eV,
with the reverse reaction being
even more difficult (activation barrier
= 3.1 eV). As an alternative to this
recombination reaction of N(a), the

authors found the barrier to the
formation of SbN(a) to be far easier
(0.7eV), which makes this a feasible
reaction path under most experimental
growth conditions.
Once formed, SbN(a) diffuses across
the surface, with a barrier of 0.7 eV,
increasing the effective mobility of the
N atom on the GaN(0001) surface
until the next surface event occurs.
This can be either the incorporation of
an N atom at a step edge (Figure 3a)
or the recombination with another N
atom, in which case N2 is formed and
desorbed from the surface (Figure 3b).
In both cases, the N atom is released
from SbN(a), freeing up the Sb(a) to
react with another N(a) atom and
repeat the cycle.
This cycle continuously regenerates
Sb(a), and hence only a small amount
of surface Sb would be needed for the
above catalytic cycle to operate. This
is in accord with the fact that under
typical growth conditions, the vapor

pressure of Sb is several orders of
magnitude higher than that of gallium,
suggesting that only a small amount of
Sb will be on GaN(0001) surface
available for surfactant action.

The studies described in this article
show that the surfactant action of Sb
is present on the GaN(1120) surface
too, but the kinetics of the elementary
steps are quite difficult there. This
leads to a remarkable increase in the
lateral overgrowth rate and results in
formation of vertical facets on GaN in
the presence of even low partial
pressures of Sb.

Because of the deep surface relaxations
characterizing the GaN surfaces, a
large number of GaN layers need to
be included in the total energy
calculations. Accordingly, massively
parallel computing environments,
such as those available at the NAVO
MSRC, make an ideal platform for
pursuing this fundamental research.

Acknowledgements

We would like to thank Dr. Colin Wood of the Office of Naval Research (ONR) for providing financial support for this project. Annette May's
(ONR) invaluable assistance with the computational needs of this work is greatly appreciated.

References

1. Zhang, H. F. Tang, J. Schieke, M. Mavrikakis, and T.F. Kuech, “The addition of Sb as a Surfactant to GaN Growth by Metal Organic Vapor
Phase Epitaxy,”Journal of Applied Physics, 92, 2304 (2002).

2. Zhang, L., H. F. Tang, J. Schieke, M. Mavrikakis, and T.F. Kuech, “Influence of Bi Impurity as a Surfactant During the Growth of GaN by
Metalorganic Vapor Phase Epitaxy,”Journal of Crystal Growth, 242, 302 (2002).

Figure 3. Schematic representation of Sb interaction with N, and N transport on GaN(0001) surface. (a) SbN
formation, followed by N deposition at a GaN step-edge/defect. (b) SbN formation, followed by N2 formation and
desorption of N2 from the surface.

–

(a)

(b)

20 FALL 2003 NAVO MSRC NAVIGATOR

NAVO MSRC PET Update
Eleanor Schroeder, NAVO MSRC Programming Environment and Training Program
(PET) Government Lead

As we continue into the third year of the revamped PET
program, we are beginning our third year of project
efforts. The time duration of the projects will be a bit
shorter this year—eight months—since we are trying to get
that timeline aligned with that of the contract year. In June
2004, PET will begin to exercise the option years.
For Component 1, we have several projects in the works.

CWO-04-001: INFRASTRUCTURE DEVELOPMENT FOR

REGIONAL COUPLED MODELING ENVIRONMENTS

Software infrastructure developed in PET to support
coupled simulation of complex geophysical phenomena
will be applied to full-up, large-scale coupled
environments and ecosystem models, such as High
Fidelity Simulations of Littoral Environments (HFSoLE), in
combination with the Weather Research Framework
(WRF) model.

EQM-04-002: ERROR ESTIMATORS/INDICATORS

FOR ENVIRONMENTAL QUALITY MODELING

This effort will investigate error estimators for coupled flow
and reactive transport problems and study compatibility of
algorithms for flow and transport to determine the minimal
requirements on flow algorithms needed to maintain
accuracy and conservation properties of the numerical
method used for transport.

EQM-04-003: LINEAR AND NONLINEAR

SOLVERS FOR ENVIRONMENTAL MODELING

This effort will extend ideas developed in the context of
finite difference methods on structured grids in the parallel
simulator Integrated Parallel Accurate Reservoir Simulator
(IPARS) at the University of Texas at Austin to
unstructured grids and other types of discretizations,
including finite element methods based on continuous
and/or discontinuous approximating spaces.

CE-04-001: A CONSISTENT WELL-
DOCUMENTED COMPUTATIONAL ENVIRONMENT

This ongoing effort is building a consistent, well-
documented computational environment across the HPC
centers: compilers, message passing libraries, numerical
libraries, debugging and performance analysis tools, and
data management and visualization tools.

CE-04-002: PAPI DEPLOYMENT, EVALUATION,
AND EXTENSIONS
In this ongoing effort, PAPI, a cross-platform interface to
hardware performance counters, is being deployed and

supported on all HPC center platforms and kept up to date
with processor and operating system upgrades.

CE-04-003: APPLICATION PORTABILITY

This effort includes user outreach for a PET-developed
portability knowledge base that tracks bugs,
nonconforming features, and common programming
mistakes, as well as continued maintenance and transition
support of the knowledgebase to HPC center staff.

CE-04-007: ENHANCING DOD HPC
RESEARCH THROUGH CLUSTERS

This effort will develop a PET Cluster User's Guide and a
PET Cluster Administrator's Guide to provide instructions
for building robust clusters using National Partnership for
Advanced Computational Infrastructure (NPACI) Rocks.

CE-04-008: SCALABILITY & PERFORMANCE

OPTIMIZATION TEAM (SPOT)

This project will build on the "Consistent and Well-
Documented Computing Environment" PET project to
optimize strategic DoD HPC applications and also to
produce detailed case studies on how these codes were
profiled, how the tools were used, and what results were
accomplished.
More information about these projects and projects funded
in previous years can be found on the PET Online
Knowledge Center: https://okc.erdc.hpc.mil. If you haven't
visited it lately—or if you haven't already established an
account on it—you really should. There's a wealth of
information available there.
In August 2003, we closed out the summer intern
program. We were fortunate to have two students based
here at the NAVO MSRC, Derrick Johnson from Georgia
Institute of Technology and Xavier University in Atlanta,
Georgia and Angela McClure from Central State University
in Wilberforce, Ohio. Both students participated in the PET
Summer Intern Presentations that were broadcast across
the Access Grid. An article about what Derrick and Angela
did during the summer follows.

21FALL 2003NAVO MSRC NAVIGATOR

This summer we were pleased to have two enthusiastic
interns working with Dr. Tom Cortese, the PET
Computational Environments onsite: Derrick Johnson and
Angela McClure. Mr. Johnson is starting his senior year at
the Georgia Institute of Technology (Georgia Tech.) this fall
and is studying Computer Engineering and Physics. Ms.
McClure is a graduating senior from Central State
University in Wilberforce, Ohio, with dual degree in
Computer Science and Mathematics and plans to pursue a
Ph.D. in Bioinformatics. Both focused on aspects of
parallel computing, especially the use of Message Passing
Interface (MPI) and OpenMP to facilitate better
programming and communication. The following is
compiled from their final reports.

DERRICK JOHNSON - PARALLEL COMPUTING

WITH MPI AND

PERFORMANCE ANALYSIS

Why research parallel
computing? Parallel computing
provides the computational
power for everything from
predicting the path of
hurricanes to producing
blockbuster animated movies
such as “The Hulk.” This ability to produce faster, cheaper,
and more efficient systems has always been the goal of
scientists and engineers.
This summer, as part of my internship with the PET
program, I undertook the study of the performance of
several computational models to possibly find regions of
poor scaling or other regions where performance could be
improved. But, before this could be accomplished,
background information in the Unix operating system and
shell scripting, multiprocessor architecture, and parallel
programming with MPI and OpenMP were needed as
foundation material.

Since all of the computers that were utilized during the
internship were Unix systems and most of the computers
at universities use the Windows® operating system, there
was a slight learning curve. Through trial and error it was
learned that the best way of submitting multiple jobs was
not through manual labor, rather by automating this task
through shell scripting. By the end of the summer,
indispensable knowledge was gained about the Unix
operating system, and several scripts were created to
reduce some of the toil involved with submitting multiple

jobs requesting varying number of processors.
In addition, knowledge of multiprocessor architecture was
needed in order to understand how to better coordinate
parallel processors and how processors share data.
Processors with a single address space, sometimes called
shared-memory processors, offer the programmer a single
memory address space that all processors share.
Processors communicate through shared variables in
memory, with all processors capable of accessing any
memory location via loads and stores.
Single-address-space multiprocessors come in two styles.
Uniform Memory Access (UMA) multiprocessors take the
same time to access main memory no matter which
processor requests it and no matter which word is asked.
In a Nonuniform Memory Access (NUMA) machine some
memory accesses are faster than others, depending on
which processors are involved in the data transfer.
As might be expected, there are more programming
challenges to get the highest performance from a NUMA
multiprocessor than a UMA multiprocessor, but NUMA
machines can scale to larger sizes and hence offer
potentially higher performance. The alternative model to
shared memory for communicating uses message passing
for communicating among processors. Message passing is
required for machines with private memories, as opposed
to shared memory.
It is difficult to write code in parallel because of the
overhead of the communication. As an example, think of
the burden of communication for a task done by two
people compared to the burden of a task done by a group,
especially as the size of the committee increases. Another
reason why it is difficult to write parallel-processing
programs is that the programmer must know a good deal
about the hardware. On a one-processor machine, the
programmer writes the program, largely ignorant of the
underlying machine organization; issues such as data
layout are handled mainly by the compiler. In order to
write a program that takes full advantage of the underlying
hardware, the programmer must know some information
about the topology of the machine. And this is a trade off-
tailoring a program in this manner will hinder its ability to
be ported to another machine.
In order to better understand these difficulties and learn
how to write parallel code, I studied parallel programming
with MPI. Starting from a serial code, I learned how to

PET Summer Interns Focus on MPI and OpenMP
Super Computing Environments

Continued Next Page...

NAVO MSRC NAVIGATOR22

completely restructure the data layout in order to produce
a parallel version, using MPI, which I was then able to run
on several multiprocessor architectures. The efficiency of
this code was tested by plotting several graphs to ensure
that the time required for program execution was
decreasing as more processors were added to the job.
Vampir and VampirTrace from Pallas, performance analyze
tools, were used to analysis the data and to ensure that the
processors were communicating properly.
Finally, Simulating WAves Near shore (SWAN), an
important third-generation wave model used to simulate
short-crested, wind-generated waves in shallow water areas
such as coastal regions and inland waters, was chosen to
be the subject of the performance analysis.
In order to understand the parallel performance of SWAN
it is helpful to explore two quantities known as speedup
and efficiency. Speedup is the time it takes for one
processor to finish a task over the time it takes for N
processors to finish the same task. Efficiency is speedup
over N processors. Theoretically, the speedup can never
exceed the number of processors. The efficiency is a
measurement of the fraction of time for which a processor
is usefully employed. In an ideal parallel system the
speedup is equal to N, and the efficiency is equal to one
(i.e., doubling the number of processors reduces the
execution time by a factor of two). In practice the speedup
is less than N, and efficiency is between zero and one,
depending on the design of the parallel system and the
parallel program. The results of this performance analysis
showed that the performance of the MPI and OpenMP
version of the SWAN code as closely related in efficiency.
This summer internship has truly been both challenging
and rewarding. We had opportunities to learn about
everything from how the cache works to programming
with MPI. This experience will also help me in my future
endeavors by providing background information in parallel
programming and MATLAB, two tools that are
requirements for my upcoming classes for the fall semester.
Overall, I have enjoyed my time here and the time my
mentor (Tom Cortese) and colleagues have taken out of
their busy schedules to sit down to lecture and talk to us
about anything we needed help with. I would highly
recommend working at the NAVO MSRC to anybody who
would like to learn about High Performance Computing.

ANGELA MCCLURE - DEBUGGING AND

PERFORMANCE ANALYSIS

The Department of Defense (DoD) relies on High-
Performance Computing (HPC) as a key enabling
technology. Parallel programming skills, including
debugging and performance analysis techniques, are

powerful and marketable tools
in today's HPC environment.
My goals in participating in the
internship program were to
acquire knowledge of MPI and
OpenMP and to gain a better
understanding of how to
analyze MPI and OpenMP
programs with debugging and
performance analysis tools.
Under the tutelage of Tom Cortese, the Computational
Environment on-site, I learned about the fundamentals of
parallel programming, including using MPI and OpenMP,
as well as became familiar with debugging tools and
benchmarking.

The Stommel Model is a two-dimensional solution to a
model problem for Ocean Circulation that provides a good
basis for learning various parallel programming skills. Using
this model, I learned how the data were organized so the
model (originally written in serial Fortran, now parallelized
with both MPI and OpenMP) could be run utilizing parallel
processing machines. TotalView, an interactive graphical
debugger for parallel code, was used to identify potential
runtime errors in the code. Vampir, a tool from Pallas
GmbH that provides visualization and analysis of MPI
resources, allowed me to analyze the parallel code to see
the advantages of using MPI.

I also experimented with the Monte Carlo algorithm to
learn to convert serial code to a parallel version using both
MPI and Open MP. This enabled me to compare the
difficulty level involved in transforming a program into
each version. I also looked at the Numerical Aerodynamics
Simulations (NAS) OpenMP Parallel LU Benchmark using
AssureView, a versatile tool from KAI (now Intel) that can
be used to identify and correct a wide variety of logical
OpenMP errors, including deadlocks and race conditions.
Overall, I have had a dynamic and challenging internship
that has exposed me to a variety of aspects in parallel
computing. I have learned how to change serial code into
parallel code using both MPI and OpenMP and have
gained a better understanding of several tools used for
debugging and tuning parallel applications. The massive
amount of information that I have received from PET has
enhanced my knowledge and skills with programming
and computer systems.
I feel confident about what I have learned and plan to
apply it to future endeavors. I have learned that parallel
computing consists of architecture, libraries, directives,
performance tools, and the ability to write multi-process
and/or multi-threaded programs that produce correct
results and make efficient use of parallel resources.

FALL 2003

NAVO MSRC NAVIGATOR 23FALL 2003

The Uniform Command Line Interface (UCLI) is a set of
tools designed to provide a consistent set of commands
and unified syntax across all of the Major Shared Resource
Centers. Currently, the UCLI toolset consists of commands
for accessing archive file systems and preparing and
submitting jobs into a batch queue system. This toolset is
also platform independent.
The NAVO MSRC supports the UCLI effort and has
installed the most recent version on all its supercomputer
and archival storage platforms.
In order to help users take advantage of the UCLI, this
article includes a tutorial to demonstrate its use. An example
script is included below that demonstrates most of what
users need to do when running batch jobs using the UCLI's
site-independent syntax.

ARCHIVE COMMAND

The archive command is designed to perform basic file-
handling operations on the center's archival storage
system. For example, to retrieve a file from the mass-
storage system and place it in the current working
directory, do the following:

archive get pathname

where 'pathname' is the path on the archival system to the
file. If you need to retrieve more than one file, archive can
do that too:

archive get -C path f i le1 f i le2 f i le3 . . .

where the -C option identifies the 'path' locating the
sequence of files'file1 file2 file3 ...' that you want to retrieve.
To learn more about archive's options and arguments, type
'man archive' on any NAVO supercomputing system or
look at the online documentation at
http://www.pstoolkit.org. A more detailed example is
included below.

QPREP COMMAND

The qprep command translates job-submission scripts from
a platform-independent format to the local, platform-
dependent format. This is useful when you run the same
code on different queuing systems (either at different
centers or simply on different platforms at the same
center). The translated qprep script is written to a new file,
which may optionally be submitted to a queue by qprep.
For example, the following script, named exampleScript,
could be used on any DoD platform that supports the
qprep and archive standards:

#!/bin/csh

#PSTQ job_name = run20.batch

#PSTQ stdout = run20.stdout

#PSTQ stderr = run20.stderr

#PSTQ mail = e

#PSTQ mail_to = happyuser@anywhere.com

#PSTQ account = NAVOSLMA

#PSTQ paral lel_env=paral lel

#PSTQ queue = batch

#PSTQ wall_t ime = 12:00

#PSTQ nodes = 1

#PSTQ submit=y

#PSTQ END_OF_PREAMBLE

define some useful parameters

set executabe = 'a.out'

set massStorePath = 'KH/3D/R25003d/run20'

set workDir = ' /work/happyuser/run20'

set inputFiles = (run20.dat0 run20.params)

set outputFiles = (run20.result1 run20.result2)

change to working directory

cd $workDir

retr ieve the input data to s tart the run

archive get -C $massStorePath $inputFi les

run executable
(Note: this syntax is specific to the IBM machine.)

SITE-INDEPENDENT COMMANDS AT NAVO
MSRC: A UCLI HOW-TO
Joe Werne, NorthWest Research Associates, Inc., Boulder, CO, and Jared Barousse, NAVO MSRC User Support

Continued Next Page...

24 FALL 2003 NAVO MSRC NAVIGATOR

poe $executable

move run output to archival s torage, delet ing
the local copy

archive put -D -C $massStorePath $outputFi les

exit

Note that the script preamble uses the UCLI's Practical
Supercomputing Toolkit (PST) syntax.
To submit this script to the local queuing system, you
simply type:

qprep exampleScript

To learn more details related to qprep syntax, type 'man
qprep' on any NAVO supercomputer platform or refer to
the online documentation at http://www.navo.hpc.mil/us/
FAQ/PS_Toolkit2.html.

NE W QPREP AND ARCHIVE COMMAND FEATURES

The UCLI is acquiring new features this year. So far the
following methods are available for archive: put, get, ls,
mkdir, and stat (to check the status of the archival
storage system).

New methods currently being added to archive include:
mv, rm, rmdir, chmod, and chgrp. Similarly, to enhance
qprep's functionality, the following methods will be added
to the UCLI:

? Jobrun - a method to define platform-independent
syntax for running a parallel executable. In the
example above, mpprun would be replaced
with jobrun.

? Platform - a method to provide uniform queue
naming, uniform work-directory name, uniform
specification of the target computing platform, and
uniform specification of the target queue system.
This will allow users a glossary and syntax for
dealing with these unnecessarily site-specific
aspects of supercomputer center usage.

For more details on the UCLI To Do list, visit
www.pstoolkit.org. If you would like to shape the future of
the PST, please fill out a survey and let the developers
know what you need. The survey is online at
http://www.pstoolkit.org/Survey/index.html.

The new and improved User Support personnel at the NAVO MSRC. (L-R) Bryan Comstock, John Tippitt, Jared
Barousse, Cheryl Dedeaux, Sheila Carbonette, Sheri Helman.

25FALL 2003NAVO MSRC NAVIGATOR

Navigator Tools and Tips

NAVO MSRC Help Desk FAQs
John Cazes, NAVO MSRC User Support

Do you get frustrated trying to find answers to those
seemingly simple, yet elusive questions about the NAVO
MSRC systems? You can be assured that you aren't alone.
With so many environments in one place, it is hard
enough to remember the machine names, much less every
little quirk about each system.
Most people spend a lot of time looking for the answers to
the very same questions. First, they search the NAVO
MSRC website, and then an internet search engine...and
only after running out of search keywords and patience do
they call the Help Desk, where finally, the question is
answered, and all is well.
The problem at this point is 45 minutes were spent trying
to find out how much of your allocation you have used
rather than working with the 200 Gigabyte (GB) data file
your program has generated.
Our job here at the Help Desk is to solve problems for the
user community in the shortest possible time, so that their
important scientific work can move forward. With this in
mind, we want to catch as many people at the very
beginning of the search process and get the question
answered right away.
We have gathered together as many common questions as
possible into a new User Frequently Asked Questions
(FAQ) section, accessible from the NAVO MSRC web page
at http://www.navo.hpc.mil/faq.html. The FAQ is intended
to be a handy quick-reference that shortens some of those
45-minute quests for information to something more
reasonable, say, 45 seconds.
For example, here are two sample questions from the new
FAQ:

Q: WHY DID THE COMPUTER ASK FOR MY PASSCODE
TWICE, AND THEN FAIL TO LOG ME IN?

A: This is a symptom of repeated passcode mistakes while
trying login: After two attempts, the system enters
"Next Token Mode." What this means is that you must
enter your regular passcode AND a verification
passcode to gain access. When you get a second
passcode prompt, you must allow the SecurID to cycle
to the next random number and then you enter the
next number into the second passcode prompt. On the
second passcode, enter the number directly off the
display—the second passcode will fail if you try
entering your Personal Identification Number (PIN) a
second time.

Many users get frustrated trying to get out of Next Token
Mode. The Help Desk can immediately clear the Next
Token Mode, so if you fail to get past it several times in
succession, just call and we will assist you.

Q: HOW CAN I TELL WHAT VERSION COMPILER I AM
USING?

A: In order to check the version information on the IBM
compilers, you must use the “lslpp” command. To
check the Fortran compiler, you would use “lslpp -l |
grep xlf” and for the C/C++ compilers, you would
use “lslpp -l | grep vac”(vac stands for VisualAge
Compiler, which is the official IBM name of the
C/C++ compiler set). Unfortunately, this produces
more output than most users really want; there is no
simple "-v" option available.
On the CRAY systems, the “-v” compiler option shows
the default compiler version. In addition, the “module
avail” command outputs all available versions of
libraries and compilers.

For users who are new to our systems, the FAQ section
also contains information and links to help get you
oriented with the different systems. And remember,
whether you are a new or experienced user, you can
always call the Help Desk, and we will be happy to help
you to avoid the frustration and get the problem solved.
NAVOCEANO MSRC analysts provide technical assistance
Monday through Friday via the Help Desk telephone:
(800) 993-7677
(228) 688-7677
DSN: 828-4161
or by email (msrchelp@navo.hpc.mil) during the prime
shift from 0800 to 1630 CST.

26 FALL 2003 NAVO MSRC NAVIGATOR

input devices as well as separate threads for each graphics
pipe. VRJuggler also provides a cross-platform thread class
for allowing developers to further divide computations onto
more threads. By dedicating separate threads for data
loading and visualization calculations, rendering threads
are left only with the responsibility for sending rendering
primitives down the graphics pipeline.
Another important issue with designing CAVE applications
is the limited amount of input options. Most CAVE
environments have a simple wand with 3 to 4 buttons and
an optional joystick. Since users need to be able to move
themselves around the virtual environment and be able
to set visualization parameters and interact with the
environment, it was necessary to design a virtual Graphical
User Interface (GUI) complete with movable windows,
buttons, checkboxes, and sliders. By designing the GUI in a
modular fashion similar to most 2D GUIs, configuration
panels could easily be created to allow the user to change
settings such as which depth to slice the data or which data
variable to color the massless particles.

CONCLUSION

The NAVO MSRC Visualization Center has the expertise to
provide tailored applications to allow scientists to visualize
their data. While many applications are designed for
desktop workstations, through the use of tools such as
VRJuggler and cooperation with universities such as MSU,
the Visualization Center can also provide applications
designed to run on the cutting edge of high-end virtual
reality environments. The CAVE application designed for
ARSC is one example of the type of solutions that can be
provided. It is hoped that this application proves useful to
the researchers at ARSC. The NAVO MSRC Visualization
Center staff solicits any other users in need of this type of
technology to contact them at viz@navo.hpc.mil. Display of particle traces through an ocean model.

CAVE Continued...

December 1-4, 2003 Cluster 2003: IEEE International Conference on Clusters
Hong Kong
www.csis.hku.hk/cluster2003

December 17-20, 2003 10th Annual International Conference on High Performance Computing (HiPC 2003)
Hyderabad, India
www.hipc.org

January 18-23, 2004 2004 International Symposium on Collaborative Technologies and Systems (CTS'04)
San Diego, CA
http://www.engr.udayton.edu/faculty/wsmari/cts04/cfp.html

February 25-27, 2004 SIAM Conference on Parallel Processing for Scientific Computing (PP04)
San Francisco, CA
www.siam.org/meetings/pp04

March 14-17, 2004 PerCom 2004 - Second IEEE International Conference on Pervasive Computing
and Communications
Orlando, FL
www.percom.org

March 30-April 1, 2004 HPCC'04 18th Annual HPC Conference
Newport, RI
www.hpcc-usa.org

April 18-22, 2004 Advanced Simulation Technologies Conference 2004 (ASTC'04)
Arlington, VA
http://www.scs.org/confernc/astc/astc04/cfp/astc04.htm

April 18-22, 2004 High Performance Computing Symposium 2004 (HPC 2004)
Arlington, VA
http://www.eng.uci.edu/~jmeyer/hpc2004/

April 26-30, 2004 IPDPS 2004 - International Parallel and Distributed Processing Symposium
Santa Fe, NM
www.ipdps.org

June 4-6, 2004 International Symposium on High Performance Distributed Computing (HPDC-13)
Honolulu, HI
www.hpdc.org

June 28-30, 2004 VECPAR2004 - 6th International Meeting on HPC for Computational Science
Valencia, Spain
http://vecpar.fe.up.pt/2004

